Algorithm Description for the ‘BandSystem’ Spectral Analysis System

P. R. Gazis

San Jose State University Foundation, NASA Ames Research Center, Moffett Field, CA

Introduction

 The ‘BandSystem’ spectral analysis system is a rule-based system for the classification of mineral spectra. Input consists of a set of files, each of which contains one mineral spectrum. Each spectral file is assumed to be in ASCII format, and consist of a header block followed by one or more columns of wavelength and spectral information. These spectra could be from a variety of different instruments and wavelength ranges. The original version of this system was developed for use with near- and mid-IR reflectance spectra, but with appropriate modifications, this system could be used for a broad range of spectral classification purposes. Output consists of a list of possible mineral constituents associated with each spectrum.

 This system is written in object-oriented fashion in C++, and consists of a driver routine which invokes a succession of modules to preprocess the spectrum, extract spectral features, use these features to identify possible constituents of the sample spectrum, and write the results to an output file. Each module is embodied as a separate class. Processing is performed by the constructors and member functions of these classes. Information is passed between classes and to i/o operations using access functions. These modules are described below.

Preprocessor

 The Preprocessor prepares the spectrum for use by subsequent modules of the system. In principle, it could also be modified to check each spectrum for format errors and analogous problems. Input to the Preprocessor consists of two arrays: one containing wavelength channels and the other spectral values, both in some predefined units. Output consists of two corresponding arrays: one containing wavelength channels in μm and the other reflectance values in

percentages. The Preprocessor performs the following steps:

 1) Multiply wavelength channels by a scaling constant to convert them to the appropriate units. In principle, the Preprocessor could convert wavelength channels to any units, but subsequent modules of this system expect wavelengths to be expressed in μm.

 2) Multiply spectral values by a scaling constant to scale them to the appropriate units and flag any values that lie above some upper limit with the a BAD DATA flag (-999.999). For reasons of efficiency, these two operations are both performed within the same iteration loop. In principle, the Preprocessor could scale the spectral values to any units, but subsequent modules of the system expect to receive reflectance values in the form of percentages.

 3) Calculate the average albedo of the spectrum (ignoring data flagged as bad), then multiple reflectance values by a constant scaling factor to rescale the spectrum to a user-defined average albedo.

 4) Store the preprocessed spectrum as two arrays, wavelengths in μm and percentage reflectance values as described above, for use by other modules in the system.

Feature Extractor

 The Feature Extractor applies a procedure based on the method of Grove et al. [1992] to identify and characterize possible spectral bands. This module performs a sequence of operations to process an input spectrum. It stores the input spectrum and the intermediate results from each operation and in a series of arrays, each of which contains a spectrum. One of these arrays is selected for use as the final processed spectrum. In principle, any of the arrays could be chosen for this purpose, even the one that contains the raw input spectrum, but in practice, for purposes of carbonate detection, the smoothed spectrum produced by Step 2) described below is used. The feature extraction algorithm is applied to this spectrum to produce a list of spectral bands and associated characteristics. This module performs the following operations:

 1) Clip the raw input spectrum and store the clipped raw spectrum in an array, 'rawSpec'.

 2) Smooth the spectrum using a boxcar average and store the result in an array, 'smoothedSpec'.

 3) Smooth the spectrum using a boxcar average to generate a background and store the result in an array, 'backgroundSpec'.

 4) If requested, calculate a hull fit to the background spectrum calculated in Step 3) and store the result in the array, 'backgroundSpec'.

 5) Subtract the background spectrum, ‘backgroundSpec’, from the smoothed spectrum ‘smoothedSpec’, to generate a difference spectrum, ‘differenceSpec’.

 6) Divide the smoothed spectrum, ‘smoothedSpec’, by the background spectrum, ‘backgroundSpec’, to generate a difference spectrum, ‘differenceSpec’.

 7) Select the spectrum from which features are to be extracted and store it in an array, 'proSpec'.

 8) Identify local minima and inflection points that could represent the centers of bands.

 9) Discard possible bands that may be associated with noise.

 10) Store a list of 'band features' for use by the Classifier.
Classifier
 The Classifier is a simple forward-chaining expert system [Winston, 1984] that applies a set of rules to the list of noise and band features described above to classify each spectrum. This module is described in Appendix D. This module is not instrument-specific, and in principle it could be used to perform any classification for any instrument and application for which data could be represented as a modest list of features and classification could be accomplished by a set of deterministic rules.

Output Module

 The Output Module takes the output of the Classifier and writes it to a file in a human-readable format.

