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Abstract

How can an autonomous agent make a big discovery, or even a tiny one?  How does it create, maintain, and re-organize its fabric of ideas?  How does the agent balance generating new ideas against keeping useful ones, or how does it distinguish between knowledge-poor data and knowledge-rich metadata?  How does it match the complexity of its mental models to the complexity of the events it is trying to model?  How does it decide what kind of data and mental models it needs at any given time?   More fundamentally, how does the agent's entire fabric of ideas operate as a single unit integrating all domain metadata?   

We present a novel unified approach to addressing these important questions simultaneously. We discuss a new class of agents whose purpose is to build qualitative models of its world W, where W is a given class of real events.  This new S-class (S for Science) of discovery agents is based on synergy at the boundaries of cognitive science, theoretical physics, and complex networks.  The discovery process is driven by a critical state maintained in the agent's fabric of ideas M(W), about its world W.  The space M(W) maintained in a critical stress state, is poised for instabilities which trigger re-organizations of ideas about W, called mindquakes in M(W).  The instabilities are triggered by small mental events (new sensory data, new facts).  

A topological space (M, T) is the least structured, most fruitful representation of the agent's 'mind' state.  It is a set M of loosely bound simplexes (concepts, relationships) serving as building blocks for competing/cooperating models mi, endowed with neighborhoods around simplexes which induce the topology T on M.  

We model a self-organized critical (SOC) dynamics of M, by mapping it to SOC models.  The agent would makes frequent small discoveries, occasional medium ones, and rare revolutions about W.  Thus, the magnitude of any given discovery is essentially unpredictable, and depends mainly on ubiquitous instability paths threading the agent's topological space (M, T), maintained in a critical state.  Discoveries of all magnitudes are essentially of same nature.  No genius in the agent is required, only a critical fabric M setting the stage, for when new pieces of information arise.  Critical Inferencing (CI) also provides specific design constraints and guidelines for constructing discovery agents.

I. Project Highlights

The primary goal of the project is to develop autonomy capability for future NASA single/multi-agent (rovers, bots, sensors, observatories etc.) missions, for modeling and eventually, anticipating complex physical events, such as space plasma events. We developed the core algorithmic architecture of a class of science agents (S-Agents) to enable such knowledge discovery tasks [1, 2, 3, 4, 5, 6], as well as developed 

classification approaches for some signal classes [7, 8].

The main obstacle to genuine agent autonomy is that a number of key questions must be addressed simultaneously (as opposed to having separate pieces of software codes run by humans).  Important questions include the following:

· How can an autonomous agent make a big discovery, or even a tiny one?  

· How does it create, maintain, and re-organize its mental fabric of ideas?  

· How does the agent balance creating new ideas against keeping useful ones?

· How does it integrate knowledge-poor data to knowledge-rich metadata?  

· How does it match the complexity of its mental models to the complexity of the events it is trying to model?  

· How does it decide what kind of data and mental models it needs at any given time?   
· More fundamentally, how does the agent's entire fabric of ideas operate as a single unit, binding all relevant domain data and metadata participating in the knowledge discovery process? 

In this project, we developed a novel unified approach [1, 2, 4, 5] to addressing these important questions simultaneously.  We first highlight some limitations of the main AI methods currently in use.

Some Limitations of Current (Rule, Logic and Probability-based) Approaches:

· No pruning leads to exponential complexity scaling for real science domains.

· Brittleness of logic statements or rule sets.

· Brittleness of truth or (prior) probability assignments

· Independence assumptions for probability distributions.

· Inability to adequately cope with distinct inferencing modalities (such as physical, causal and temporal).

· Inability to autonomously assign quantitative meaning to qualitative statements.

· Inability to autonomously reduce the complexity of the real world environments. 

· Poor scaling for realistically complex science knowledge domains.

· No systematic integration of data to domain metadata.

To address these limitations, following qualities were developed for the design of S-class agents, and in particular, the Critical Inferencing (CI) algorithms residing at the core of the agent's autonomous model extraction capabilities.
Characterization of S-class agent design and the Critical Inferencing (CI) approach:
· Simulates human expertise based on past experiences (internal competing and cooperating mental models) of physical situations.

· Simulates brain state which has been argued to be in a physical/computational critical state.

· Simulates a form of analogical reasoning, CI can be faster than rule, logic, or probability-based methods, more robust (less brittle), and not have exponential complexity scaling for realistic complex science domains. 

· Binds of all domain knowledge into a single ensemble M (the ‘fabric of ideas’) of cooperating/competing models, maintained in a critical state.

· Models discovered are grounded on known models (domain metadata), but not limited to them.

· Cooperation and competition between an ensemble M of domain models and mindsets (metadata) to explain the data.

· Models output are compact humanly understandable predicate statements.

· Combines massive pruning, knowledge-poor and knowledge-rich model searching.

· Massive domain/search pruning is done by a Recursive Orthogonal Decomposition (ROD) of the agent's 'World'.

· Quantitative meaning is assigned to qualitative statements by ROD. 

· Integrates data into domain metadata in a uniform knowledge representation called mindsets and basis models.
· Bottom-up creativity via deep yet non-random mixing of ideas in M, characterizing the critical state.

· Good (supported by evidence) ideas (subcritical regions) are maintained, while poor ones (supercritical paths) are re-organized or transported out of M via critical state dynamics.  Model uncertainty (entropy) is propagated out of the ensemble M.

· Complexity factorization [1, 2] via systematic partitioning into minimally redundant inferencing types: categorical, spatial, temporal, causal, physical, logical, mathematical, incompleteness, and information.

· Can be integrated into autonomous agent architectures. 

Note that real world uncertainty, imprecision and incompleteness are not removed by CI, but it is not an explicit part of the inferencing process itself.  Entropy assignments to M can be made as crude (a statement is currently supported or not by evidence) or fancy (probability, possibility, plausibility of statements) as desired.  In this sense, CI can eventually incorporate other approaches into it.

II. S-Class Agent Function 

For simple modeling situations with purely competitive (mutually exclusive) models, more traditional classifier approaches might be used to identify classes of models via a selected set of features for each model.  However, in more complex realistic situations, modeling requires mixtures of competing (dominantly mutually exclusive) and cooperating (dominantly complementary) partial and incomplete models of the world W.  In addition, the features of the models are not numerical, but are themselves relationships or more complex objects (such as n-plexes and complexes).   In such real-world complex situations, more comprehensive approaches, such as CI, are needed. 

The S-class agent's autonomous event modeling process CI, occurs in four main phases:


I.  Recursive Orthogonal Decomposition (ROD) of the Agent's World W


II. Domain Mindset and Basis Model Metadata Activation to SOC


III. Critical Dynamics using Evidence


IV. Model Evaluation Phase

Phases II and III are done within the scale recursion loop I.  Phase IV collects the best (lowest entropy) models { mi } of the 'System' studied at each iteration of the ROD, and evaluates them.  Evaluation is made possible because the agent compares models mi(System) having the same information structure, allowing a pure counting process for comparing models. 

Phase I: Recursive Orthogonal Decomposition of W

This phase reduces the complexity of the agent's world W, where W = class(Events), to focus on a single 'System', which has characteristic scales (space, time, energy), a slice in space, a slice in time, a slice in a knowledge domain.  The decomposition also factors inferencing types (categorical, spatial, temporal, causal, physical, logical, mathematical, incompleteness, information) [1, 2].  ROD does massive domain pruning of all searches, removes semantic ambiguity of qualitative statements, and assigns quantitative meaning to qualitative words such as HighEnergy, LowFrequency, ShortTimeScales, LongWavelength, WeaklyUnstable etc.

Phase II: Domain Metadata Activation to SOC

Given the 'System' under focus in the ROD, associated domain knowledge is activated.  This knowledge has mainly two forms: a domain mindset, and a domain basis model set H.  The domain mindset serves as the glue for all the models in H.  The ingredients of the models in H are randomly mixed in an ensemble M of competing and cooperating models about the 'System'.  M is activated into a Self-Organized Critical (SOC) state.  In this activation phase, the agent is setting up its own mental experiment where M is interpreted as an information source with maximal entropy.  This preparation will allow phase III to maximally reduce entropy (modeling uncertainty, missing model information) when real evidence data comes in from the agent’s Percept output by its Sensing engine.
The activated state of maximal entropy is a critical state (SOC) of the metadata ensemble M.  Building M into a SOC states unifies the cooperating/competing models in M into a unit information source M.  This would not be the case if domain knowledge were kept partitioned as distinct domain mindsets and basis models Hi in H.

Phase III. Critical Dynamics over Evidence

Data becomes evidence, only in the presence of hypotheses.  Domain mindsets and basis models in the agent's Reason engine provide the hypotheses within which data can become supporting or conflicting evidence. The competition/cooperation of basis models H is mediated by C-dynamics (Critical dynamics) which enables the agent to reorganize its ensemble M of competing/cooperating models of the 'System', to match the real-world evidence data (Percept statements output from Sensing's classifier rules and other mining rules).  The qualitative statements in Percepts are concepts, classes, segments, clusters, associations, trends etc. output from the mining rules in the agent's Sensing engine. 

Phase IV.  Model Evaluation

During this phase, each ‘best’ model mi(System) of the 'System' is interpreted as an argument in support of the conclusion statement c, that mi(System) is a good qualitative model of the 'System' under study. 

c = IsAModelOf(mi, System)

The argument's are tested for their inductive strength, validity, and soundness as well as additional science criteria.  All criteria are quantified using specific measures.  Such measures are made possible only because they compare (count) argument elements between models of uniform knowledge representation [1], [2]. More details of S-Agents/CI design are provided in the appendix.  

III. Relevance to NASA and Applications to NASA Missions and Programs

Project planning has been geared for the relevance of S-Class Agents to NASA's science Endeavors.  Software agents are needed to increase the autonomy of single/multi-system (spacecraft, instruments, observatories, bots etc.) missions, in particular for long-term distant missions where communication barriers, time-delays and bandwidth efficiency become critical.

The design of the S-class agents proposed in this project addresses questions related to the following specific capabilities:

· Autonomy is provided by providing domain information (metadata - expertise - generic knowledge) frameworks to data in a consistent uniform manner.

· To enable multi-agent (rovers, bots, instruments, observatories) systems to autonomously optimize their configuration, experimental capabilities, coordinate tasks in any given situation.

· To autonomously optimize low-level short term coordination and decisions for the long-term high-level science mission goals in evolving environments/situations. 

· To enable autonomous qualitative modeling of focused physical aspects of a given situation, of interest to its science discovery mission. 
· To communicate compact models describing the situation in sets of short understandable statements. 

· This capacity optimizes bandwidth usage (metadata is communicated rather than data: a compression) and communication expediency and clarity. 

· To use a new model-based form of inferencing, called Critical Inferencing, which is more robust (less brittle) and scales well in domain complexity, compared to standard rule, logical and probabilistic AI approaches.

S-class agents will also be well suited for knowledge discovery in large databases. The agent feeds on data via its Sensing and outputs simple models of specific aspects of the data.  An S-agent seeks the data it needs to create qualitative models of the aspects of the world it is focused on.  Those models, expressed as sets of simple statements, are compact and natural to human researchers, and can provide insights on the domain, by highlighting new chains of relationships between concepts.

IV. Tracking and Current Plans
Our multiple signal classifier systems software [7, 8] will be made available at the official NASA - AISRP code repository site.

The main current plan is to develop autonomous Critical Inferencing capability for autonomous model extraction of complex science data. 
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Appendix

Agent Grand Challenge: Simultaneously address key questions
Q: How does the agent simplify its world W = Class(E)?

A: Recursive Orthogonal Decomposition of W.

Q: How does the agent bind its high-level long term goals to its low-level short-term decisions?

A: Feedback Loops in a Goal Abstraction Hierarchy.

Q: How does it integrate knowledge-poor data, with generic knowledge-rich metadata?

A: It grows its metadata on data in a Scale-Free manner.

Q: How can the agent’s mind M behave as a single organism?

A: Critical State of M, and Critical Inferencing or C-dynamics.

Q: How does the agent know what data and mental models it needs to build at any given time?

A: OptEnt Principle: Self-Optimize the Entropy S(M) of its information source M. 

Q: How does it prune its own bad ideas and preserve good ones?

A: OptEnt Principle: Minimize the Entropy S(M) of its models.

Q: How can the agent discover a big, or even a tiny new idea?

A: Reorganize the fabric of ideas M on all scales, through Mindquakes.
Q: How does it evaluate its own models m(W) of its world W?

A: Aesthetics measures of inductive and scientific soundness. 

S-Class Agents
Synergy:

Cognitive Sciences 
Theoretical Physics
  Complex Networks
(Design, Inferencing)
(Critical Dynamics)
  (Representation)

Purpose:
Knowledge Discovery using qualitative models m(W)
Given: 
Agent's current world W, where W = class(Events)
Goal:
Generate a set D of competing qualitative models m(W) of the world W, and select the best one.

______________________________________________________
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Recursive Orthogonal Decomposition of W

______________________________________________________
Q: How does the agent simplify its world W = Class(E)?

A: Recursive Orthogonal Decomposition (ROD) of W. 
ROD (W) is a threefold decomposition:
· Into Separated Scales: Scale-Recursion on W down to ScaleMin, (e.g., max, meso, min-scales)

· Into Orthogonal Systems, at each Scale, 

· Into Orthogonal Inferencing, at each Scale, and for each System: { Categorical, Spatial, Temporal, Causal, Physical, Logical, Mathematical, Incompleteness, Information,… } 
Note: 
· Orthogonal does not mean independent, but minimally redundant and maximally complementary views about W: e.g., Slices in Space, in Time, in Models, in Knowledge Domains.

· Mental glue is needed to bind the orthogonal systems, inferencing subnets into a model m(W, Scale).  The glue is composed of basis orthogonal sets { H(model), M(Domain) } called the scaffolding Sf(M) of the ensemble M.
Mind State as Topological Spaces (C, T)
______________________________________________________
· Mind State M  = { n–Plex }  (Algebraic Topology)

Ensemble M of all coopeting models, exists on a d-Lattice L. 

· Universe of all possible mind states C = { M(t) }

· Tm  = { m-neighborhoods }
= microstates of M

· Fine Topological Space = (C, Tm)

· TM = { M-neighborhoods } = macrostates of M

· Coarse Topological Space = (C, TM) 

· Entropy of M:
S(M) = - ∑ pi Log pi + σi = Sp(M) + Sσ(M).

· Certainty 

pi =  f ( Alternatives compatible with M ) 

· Stress 

σi = ( Gaps, Mismatches at i )


· Sp(M) =  Measure (Indetermination in M)

· Sσ(M) = Measure (Incompleteness in M, Inconsistency in M)

· S(M) = Measure ( Missing Information in M )
       

Critical Dynamics – Critical Inferencing
______________________________________________________
C-Dynamics = iterated Activation + Reorganization of M, governed by an Optimal Entropy, or OptEnt Principle.  

C-Inferencing = propagation of knowledge about the entropy (missing information), of statements of coopeting models, along L.  

1- Curiosity driven Activation of M to SOC State 
· OptEnt Principle = Maximize { S(M) } up to Scrit.

· Grow metadata on seed data into Sf(M).

· Establish a SOC in Sf(M).
· P = Curiosity(Growth) / Conservatism(Invariance) → Pc
· Long-range correlations on the d-Lattice L binds individual degrees of freedom. M behaves as one.

· Critical State S(M) = Sc unstable stationary state.

2- Instability driven reorganization of M – Mindquake Game
· OptEnt Principle = Minimize { S(M) } 

· Data from Percept trigger mindquakes.

· Mindquakes propagate along supercritical entropy paths in the underlying d-lattice L.

· Mindquakes are Extremal dynamics
· A Mindquake reduces the entropy of a supercritical path
· Models m(W) are Min. Ent. subsets extracted from M: m(W) have minimal missing information. 
Pros of C-Dynamics
· ROD exploits a decomposability of Nature into basis models, processes, structures,…  Scaffolding Sf(M) = {H(model), M-Set(Domain)}.  Uniform integration of data and metadata.

· C-Inferencing Entropy S(M) assignments and measures are non- arbitrary: S(M) computed from counting within M.

· No programmed discovery genius: just a fabric of ideas M(W) maintained in an unstable critical state threaded by supercritical paths of all lengths.  Real world relational complexity matching.

· Mental reorganization occurs on all scales.  Sensitivity to small new data influences, binds the entire space (M, Tm) into a single organism.  Stability of ‘good’ (low entropy) ideas (frozen into M), instability of poor (high entropy) ones.
· Specific S-agent class design constraints: Cognition’s utilities {Goals, Preferences, Preference Orderings, Curiosity, Conservatism, Aesthetics (for evaluation), Autobio (for SOC), …} are specified by the requirements of C-dynamics.
· The OptEnt Principle binds Cognition-accessible macrostates(M) with Cognition-inaccessible microstates(M).

Cons of C-Dynamics 

· Fundamental unpredictability of the magnitude, or the specific nature of the discovery about the ‘System’. Tiny discoveries are frequent, major ones are rare. It’s S-Agent’s ‘free will’, we are not in control!
